Devops A Software Architects
Perspective Sei Series In Software
Engineering

The Most Complete, Practical, and Actionable Guide to
Microservices Going beyond mere theory and marketing
hype, Eberhard Wolff presents all the knowledge you need to
capture the full benefits of this emerging paradigm. He
illuminates microservice concepts, architectures, and
scenarios from a technology-neutral standpoint, and
demonstrates how to implement them with today’s leading
technologies such as Docker, Java, Spring Boot, the Netflix
stack, and Spring Cloud. The author fully explains the
benefits and tradeoffs associated with microservices, and
guides you through the entire project lifecycle: development,
testing, deployment, operations, and more. You'll find best
practices for architecting microservice-based systems,
individual microservices, and nanoservices, each illuminated
with pragmatic examples. The author supplements opinions
based on his experience with concise essays from other
experts, enriching your understanding and illuminating areas
where experts disagree. Readers are challenged to
experiment on their own the concepts explained in the book
to gain hands-on experience. Discover what microservices
are, and how they differ from other forms of modularization
Modernize legacy applications and efficiently build new
systems Drive more value from continuous delivery with
microservices Learn how microservices differ from SOA
Optimize the microservices project lifecycle Plan, visualize,
manage, and evolve architecture Integrate and communicate
among microservices Apply advanced architectural
techniques, including CQRS and Event Sourcing Maximize

Page 1/32



resilience and stability Operate and monitor microservices in
production Build a full implementation with Docker, Java,
Spring Boot, the Netflix stack, and Spring Cloud Explore
nanoservices with Amazon Lambda, OSGi, Java EE, Vert.x,
Erlang, and Seneca Understand microservices’ impact on
teams, technical leaders, product owners, and stakeholders
Managers will discover better ways to support microservices,
and learn how adopting the method affects the entire
organization. Developers will master the technical skills and
concepts they need to be effective. Architects will gain a deep
understanding of key issues in creating or migrating toward
microservices, and exactly what it will take to transform their
plans into reality.

Today's programmers don't develop software systems from
scratch. instead, they spend their time fixing, extending,
modifying, and enhancing existing software. Legacy systems
often turn into an unwieldy mess that becomes increasingly
difficult to modify, and with architecture that continually
accumulates technical debt. Carola Lilienthal has analyzed
more than 300 software systems written in Java, C#, C++,
PHP, ABAP, and TypeScript and, together with her teams,
has successfully refactored them. This book condenses her
experience with monolithic systems, architectural and design
patterns, layered architectures, domain-driven design, and
microservices. With more than 200 color images from real-
world systems, good and sub-optimal sample solutions are
presented in a comprehensible and thorough way, while
recommendations and suggestions based on practical
projects allow the reader to directly apply the author's
knowledge to their daily work. "Throughout the book, Dr.
Lilienthal has provided sound advice on diagnosing,
understanding, disentangling, and ultimately preventing the
issues that make software systems brittle and subject to
breakage. In addition to tpa%etggzhnical examples that you'd



expect in a book on software architecture, she takes the time
to dive into the behavioral and human aspects that impact
sustainability and, in my experience, are inextricably linked to
the health of a codebase. She also expertly zooms out,
exploring architecture concepts such as domains and layers,
and then zooms in to the class level where your typical
developer works day-to-day. This holistic approach is crucial
for implementing long-lasting change." From the Foreword of
Andrea Goulet CEO, Corgibytes, Founder, Legacy Code
Rocks

Software Systems Architecture, Second Edition is a highly
regarded, practitioner-oriented guide to designing and
implementing effective architectures for information systems.
It is both a readily accessible introduction to software
architecture and an invaluable handbook of well-established
best practices. With this book you will learn how to Design
and communicate an architecture that reflects and balances
the different needs of its stakeholders Focus on
architecturally significant aspects of design, including
frequently overlooked areas such as performance, resilience,
and location Use scenarios and patterns to drive the creation
and validation of your architecture Document your
architecture as a set of related views Reflecting new
standards and developments in the field, this new edition
extends and updates much of the content, and Adds a
“system context viewpoint” that documents the system's
interactions with its environment Expands the discussion of
architectural principles, showing how they can be used to
provide traceability and rationale for architectural decisions
Explains how agile development and architecture can work
together Positions requirements and architecture activities in
the project context Presents a new lightweight method for
architectural validation Whether you are an aspiring or
practicing software archit%gg, JQu will find yourself referring



repeatedly to the practical advice in this book throughout the
lifecycle of your projects. A supporting Web site containing
further information can be found at www.viewpoints-and-
perspectives.info.

Continuous Architecture provides a broad architectural
perspective for continuous delivery, and describes a new
architectural approach that supports and enables it. As the
pace of innovation and software releases increases, IT
departments are tasked to deliver value quickly and
inexpensively to their business partners. With a focus on
getting software into end-users hands faster, the ultimate goal
of daily software updates is in sight to allow teams to ensure
that they can release every change to the system simply and
efficiently. This book presents an architectural approach to
support modern application delivery methods and provide a
broader architectural perspective, taking architectural
concerns into account when deploying agile or continuous
delivery approaches. The authors explain how to solve the
challenges of implementing continuous delivery at the project
and enterprise level, and the impact on IT processes
including application testing, software deployment and
software architecture. Covering the application of enterprise
and software architecture concepts to the Agile and
Continuous Delivery models Explains how to create an
architecture that can evolve with applications Incorporates
techniques including refactoring, architectural analysis,
testing, and feedback-driven development Provides insight
into incorporating modern software development when
structuring teams and organizations

More and more Agile projects are seeking architectural roots
as they struggle with complexity and scale - and they're
seeking lightweight ways to do it Still seeking? In this book
the authors help you to find your own path Taking cues from
Lean development, they g%g4r/13ezlp steer your project toward



practices with longstanding track records Up-front
architecture? Sure. You can deliver an architecture as code
that compiles and that concretely guides development without
bogging it down in a mass of documents and guesses about
the implementation Documentation? Even a whiteboard
diagram, or a CRC card, is documentation: the goal isn't to
avoid documentation, but to document just the right things in
just the right amount Process? This all works within the
frameworks of Scrum, XP, and other Agile approaches
Describes ways to incorporate domain modeling into software
development.

This book provides practical guidance for adopting a high
velocity, continuous delivery process to create reliable,
scalable, Software-as-a-Service (SaaS) solutions that are
designed and built using a microservice architecture,
deployed to the Azure cloud, and managed through
automation. Microservices, loT, and Azure offers software
developers, architects, and operations engineers’ step-by-
step directions for building SaaS applications—applications
that are available 24x7, work on any device, scale elastically,
and are resilient to change--through code, script, exercises,
and a working reference implementation. The book provides a
working definition of microservices and contrasts this
approach with traditional monolithic Layered Architecture. A
fictitious, homebiomedical startup is used to demonstrate
microservice architecture and automation capabilities for
cross-cutting and business services as well as connected
device scenarios for Internet of Things (IoT). Several Azure
PaaS services are detailed including Storage, SQL Database,
DocumentDDb, Redis Cache, Cloud Services, Web API's, API
Management, loT Hub, loT Suite, Event Hub, and Stream
Analytics. Finally the book looks to the future and examines
Service Fabric to see how microservices are becoming the de
facto approach to buildingaggggg)le software in the cloud. In



this book, you'll learn: What microservices are and why are
they’re a compelling architecture pattern for SaaS
applications How to design, develop, and deploy
microservices using Visual Studio, PowerShell, and Azure
Microservice patterns for cross-cutting concerns and business
capabilities Microservice patterns for Internet of Things and
big data analytics solutions using IoT Hub, Event Hub, and
Stream Analytics Techniques for automating microservice
provisioning, building, and deployment What Service Fabric is
and how it's the future direction for microservices on
Microsoft Azure

This book introduces the concept of software architecture as
one of the cornerstones of software in modern cars. Following
a historical overview of the evolution of software in modern
cars and a discussion of the main challenges driving that
evolution, Chapter 2 describes the main architectural styles of
automotive software and their use in cars' software. Chapter
3 details this further by presenting two modern architectural
styles, i.e. centralized and federated software architectures.
In Chapter 4, readers will find a description of the software
development processes used to develop software on the car
manufacturers' side. Chapter 5 then introduces AUTOSAR -
an important standard in automotive software. Chapter 6
goes beyond simple architecture and describes the detailed
design process for automotive software using Simulink,
helping readers to understand how detailed design links to
high-level design.~The new chapter 7 reports on how
machine learning is exploited in automotive software e.g. for
image recognition and how both on-board and off-board
learning are applied. Next, Chapter 8 presents a method for
assessing the quality of the architecture - ATAM (Architecture
Trade-off Analysis Method) - and provides a sample
assessment, while Chapter 9 presents an alternative way of
assessing the architecturpea,g Qg}gyely by using quantitative



measures and indicators. Subsequently Chapter 10 dives
deeper into one of the specific properties discussed in
Chapter 8 - safety - and details an important standard in that
area, the ISO/IEC 26262 norm. Lastly, Chapter 11 presents a
set of future trends that are currently emerging and have the
potential to shape automotive software engineering in the
coming years. This book explores the concept of software
architecture for modern cars and is intended for both
beginning and advanced software designers.?lt mainly aims
at two different groups of audience - professionals working
with automotive software who need to understand concepts
related to automotive architectures, and students of software
engineering or related fields who need to understand the
specifics of automotive software to be able to construct cars
or their components. Accordingly, the book also contains a
wealth of real-world examples illustrating the concepts
discussed and requires no prior background in the automotive
domain. Compared to the first edition, besides the two new
chapters 3 and 7 there are considerable updates in chapters
5 and 8 especially.

Have you ever wondered how software engineers become
software architects? Or how software architects become chief
architects? This book discusses 12 of the most important
skills every software architect should have and how you can
develop and improve these skills. This book is different: It
provides real, practical made experience with tangible
examples which you can immediately apply, as well as
actions which focus on long term improvements. Many
insights are backed up by scientific studies or thought
leaders. Further reading is provided in form of book
references, overviews, templates and videos to dive deeper
into your area of interest. It's all about the human: People are
creating software. Learn how to make a difference and
accelerate your personalpggeer;%mance in an uncertain and



increasingly fast-paced world. Unfold your full potential and
become a better software architect.

The book covers the best practices and approaches for
software architects to follow when developing .NET and C#
solutions, along with the most up to date cloud environments
and tools to enable effective app development, delivery, and
deployment.

Microservices can have a positive impact on your
enterprise—just ask Amazon and Netflix—but you can fall into
many traps if you don’t approach them in the right way. This
practical guide covers the entire microservices landscape,
including the principles, technologies, and methodologies of
this unique, modular style of system building. You'll learn
about the experiences of organizations around the globe that
have successfully adopted microservices. In three parts, this
book explains how these services work and what it means to
build an application the Microservices Way. You'll explore a
design-based approach to microservice architecture with
guidance for implementing various elements. And you'll get a
set of recipes and practices for meeting practical,
organizational, and cultural challenges to microservice
adoption. Learn how microservices can help you drive
business objectives Examine the principles, practices, and
culture that define microservice architectures Explore a model
for creating complex systems and a design process for
building a microservice architecture Learn the fundamental
design concepts for individual microservices Delve into the
operational elements of a microservices architecture,
including containers and service discovery Discover how to
handle the challenges of introducing microservice architecture
in your organization

Master the Crucial Non -Technical Skills Every Software
Architect Needs! Thousands of software professionals have
the necessary technical %ggglggczations to become architects,



but far fewer have the crucial non-technical skills needed to
get hired and succeed in this role. In today's agile
environments, these "soft" skills have grown even more
crucial to success as an architect. For many developers,
however, these skills don't come naturally-and they're rarely
addressed in formal training. Now, long-time software
architect Dave Hendricksen helps you fill this gap,
supercharge your organizational impact, and quickly move to
the next level in your career. In 12 Essential Skills for
Software Architects, Hendricksen begins by pinpointing the
specific relationship, personal, and business skills that
successful architects rely upon. Next, he presents proven
methods for systematically developing and sharpening every
one of these skills, from negotiation and leadership to
pragmatism and vision. From start to finish, this book's
practical insights can help you get the architect position you
want-and thrive once you have it! The soft skills you need...
...and a coherent framework and practical methodology for
mastering them! Relationship skills Leadership, politics,
gracious behavior, communication, negotiation Personal skills
Context switching, transparency, passion Business skills
Pragmatism, vision, business knowledge, innovation

This is the eagerly-anticipated revision to one of the seminal
books in the field of software architecture which clearly
defines and explains the topic.

Salary surveys worldwide regularly place software architect in
the top 10 best jobs, yet no real guide exists to help
developers become architects. Until now. This book provides
the first comprehensive overview of software architecture’s
many aspects. Aspiring and existing architects alike will
examine architectural characteristics, architectural patterns,
component determination, diagramming and presenting
architecture, evolutionary architecture, and many other topics.
Mark Richards and Neal FI):acg)er(gm—zhands-on practitioners who



have taught software architecture classes professionally for
years—focus on architecture principles that apply across all
technology stacks. You'll explore software architecture in a
modern light, taking into account all the innovations of the
past decade. This book examines: Architecture patterns: The
technical basis for many architectural decisions Components:
Identification, coupling, cohesion, partitioning, and granularity
Soft skills: Effective team management, meetings,
negotiation, presentations, and more Modernity: Engineering
practices and operational approaches that have changed
radically in the past few years Architecture as an engineering
discipline: Repeatable results, metrics, and concrete
valuations that add rigor to software architecture
Introduction. Architectural styles. Case studies. Shared
information systems. Architectural design guidance. Formal
models and specifications. Linguistics issues. Tools for
architectural design. Education of software architects.
Architects are often harried because they have no clean,
easy decisions: everything is an awful tradeoff between two
or more less than perfect alternatives. These are the difficult
problems architects face, what this book's authors call "the
hard parts.” These topics have no best practices, forcing
architects to understand various tradeoffs to succeed. This
book discusses these hard parts by not only investigating
what makes architecture so difficult, but also by providing
proven ways to address these problems and make them
easier. The book explores topics such as choosing an
appropriate architecture, deciding on service granularity,
managing workflows and orchestration, managing and
decoupling contracts, managing distributed transactions, and
optimizing operational characteristics such as scalability,
elasticity, and performance. As practicing consultants, the
authors focus on questions they commonly hear architects
ask and provide techniqupeagetp)%tzenable them to discover the



tradeoffs necessary to answer these questions.

Architect and design highly scalable, robust, clean, and
highly performant applications in Python About This
Book Identify design issues and make the necessary
adjustments to achieve improved performance
Understand practical architectural quality attributes from
the perspective of a practicing engineer and architect
using Python Gain knowledge of architectural principles
and how they can be used to provide accountability and
rationale for architectural decisions Who This Book Is
For This book is for experienced Python developers who
are aspiring to become the architects of enterprise-grade
applications or software architects who would like to
leverage Python to create effective blueprints of
applications. What You Will Learn Build programs with
the right architectural attributes Use Enterprise
Architectural Patterns to solve scalable problems on the
Web Understand design patterns from a Python
perspective Optimize the performance testing tools in
Python Deploy code in remote environments or on the
Cloud using Python Secure architecture applications in
Python In Detail This book starts off by explaining how
Python fits into an application architecture. As you move
along, you will understand the architecturally significant
demands and how to determine them. Later, you'll get a
complete understanding of the different architectural
guality requirements that help an architect to build a
product that satisfies business needs, such as
maintainability/reusability, testability, scalability,
performance, usability, and security. You will use various

techniques such as incorporating DevOps, Continuous
Page 11/32



Integration, and more to make your application robust.
You will understand when and when not to use object
orientation in your applications. You will be able to think
of the future and design applications that can scale
proportionally to the growing business. The focus is on
building the business logic based on the business
process documentation and which frameworks are to be
used when. We also cover some important patterns that
are to be taken into account while solving design
problems as well as those in relatively new domains
such as the Cloud. This book will help you understand
the ins and outs of Python so that you can make those
critical design decisions that not just live up to but also
surpass the expectations of your clients. Style and
approach Filled with examples and use cases, this guide
takes a no-nonsense approach to help you with
everything it takes to become a successful software
architect.

This is a practical guide for software developers, and
different than other software architecture books. Here's
why: It teaches risk-driven architecting. There is no need
for meticulous designs when risks are small, nor any
excuse for sloppy designs when risks threaten your
success. This book describes a way to do just enough
architecture. It avoids the one-size-fits-all process tar pit
with advice on how to tune your design effort based on
the risks you face. It democratizes architecture. This
book seeks to make architecture relevant to all software
developers. Developers need to understand how to use
constraints as guiderails that ensure desired outcomes,

and how seemingly small changes can affect a system's
Page 12/32



properties. It cultivates declarative knowledge. There is a
difference between being able to hit a ball and knowing
why you are able to hit it, what psychologists refer to as
procedural knowledge versus declarative knowledge.
This book will make you more aware of what you have
been doing and provide names for the concepts. It
emphasizes the engineering. This book focuses on the
technical parts of software development and what
developers do to ensure the system works not job titles
or processes. It shows you how to build models and
analyze architectures so that you can make principled
design tradeoffs. It describes the techniques software
designers use to reason about medium to large sized
problems and points out where you can learn specialized
techniques in more detail. It provides practical advice.
Software design decisions influence the architecture and
vice versa. The approach in this book embraces drill-
down/pop-up behavior by describing models that have
various levels of abstraction, from architecture to data
structure design.

The Phoenix Project wowed over a half-million readers.
Now comes the Wall Street Journal Bestselling The
Unicorn Project! “The Unicorn Project is amazing, and |
loved it 100 times more than The Phoenix
Project..."—FERNANDO CORNAGO, Senior Director
Platform Engineering, Adidas “Gene Kim does a
masterful job of showing how ... the efforts of many
create lasting business advantages for all.”—DR.
STEVEN SPEAR, author of The High-Velocity Edge, Sr.
Lecturer at MIT, and principal of HVE LLC. “The Unicorn

Project is so clever, so good, so crazy
Page 13/32



enlightening!”—CORNELIA DAVIS, Vice President Of
Technology at Pivotal Software, Inc., Author of Cloud
Native Patterns This highly anticipated follow-up to the
bestselling title The Phoenix Project takes another look
at Parts Unlimited, this time from the perspective of
software development. In The Unicorn Project, we follow
Maxine, a senior lead developer and architect, as she is
exiled to the Phoenix Project, to the horror of her friends
and colleagues, as punishment for contributing to a
payroll outage. She tries to survive in what feels like a
heartless and uncaring bureaucracy and to work within a
system where no one can get anything done without
endless committees, paperwork, and approvals. One
day, she is approached by a ragtag bunch of misfits who
say they want to overthrow the existing order, to liberate
developers, to bring joy back to technology work, and to
enable the business to win in a time of digital disruption.
To her surprise, she finds herself drawn ever further into
this movement, eventually becoming one of the leaders
of the Rebellion, which puts her in the crosshairs of
some familiar and very dangerous enemies. The Age of
Software is here, and another mass extinction event
looms—this is a story about rebel developers and
business leaders working together, racing against time to
innovate, survive, and thrive in a time of unprecedented
uncertainty...and opportunity. “The Unicorn Project
provides insanely useful insights on how to improve your
technology business."—DOMINICA DEGRANDIS, author
of Making Work Visible and Director of Digital
Transformation at Tasktop “My goal in writing The

Unicorn Project was to explore and reveal the necessary
Page 14/32




but invisible structures required to make developers (and
all engineers) productive, and reveal the devastating
effects of technical debt and complexity. | hope this book
can create common ground for technology and business
leaders to leave the past behind, and co-create a better
future together.”—Gene Kim, November 2019

As the digital economy changes the rules of the game for
enterprises, the role of software and IT architects is also
transforming. Rather than focus on technical decisions
alone, architects and senior technologists need to
combine organizational and technical knowledge to
effect change in their company’s structure and
processes. To accomplish that, they need to connect the
IT engine room to the penthouse, where the business
strategy is defined. In this guide, author Gregor Hohpe
shares real-world advice and hard-learned lessons from
actual IT transformations. His anecdotes help architects,
senior developers, and other IT professionals prepare for
a more complex but rewarding role in the enterprise. This
book is ideal for: Software architects and senior
developers looking to shape the company’s technology
direction or assist in an organizational transformation
Enterprise architects and senior technologists searching
for practical advice on how to navigate technical and
organizational topics CTOs and senior technical
architects who are devising an IT strategy that impacts
the way the organization works IT managers who want to
learn what's worked and what hasn't in large-scale
transformation

Making Sense of Design Effective design is at the heart

of everything from software development to engineering
Page 15/32



to architecture. But what do we really know about the
design process? What leads to effective, elegant
designs? The Design of Design addresses these
guestions. These new essays by Fred Brooks contain
extraordinary insights for designers in every discipline.
Brooks pinpoints constants inherent in all design projects
and uncovers processes and patterns likely to lead to
excellence. Drawing on conversations with dozens of
exceptional designers, as well as his own experiences in
several design domains, Brooks observes that bold
design decisions lead to better outcomes. The author
tracks the evolution of the design process, treats
collaborative and distributed design, and illuminates what
makes a truly great designer. He examines the nuts and
bolts of design processes, including budget constraints
of many kinds, aesthetics, design empiricism, and tools,
and grounds this discussion in his own real-world
examples—case studies ranging from home construction
to IBM’s Operating System/360. Throughout, Brooks
reveals keys to success that every designer, design
project manager, and design researcher should know.
The First Complete Guide to DevOps for Software
Architects DevOps promises to accelerate the release of
new software features and improve monitoring of
systems in production, but its crucial implications for
software architects and architecture are often ignored. In
DevOps: A Software Architect’s Perspective, three
leading architects address these issues head-on. The
authors review decisions software architects must make
in order to achieve DevOps’ goals and clarify how other

DevOps participants are likely to impact the architect’s
Page 16/32



work. They also provide the organizational, technical,
and operational context needed to deploy DevOps more
efficiently, and review DevOps’ impact on each
development phase. The authors address cross-cutting
concerns that link multiple functions, offering practical
insights into compliance, performance, reliability,
repeatability, and security. This guide demonstrates the
authors’ ideas in action with three real-world case
studies: datacenter replication for business continuity,
management of a continuous deployment pipeline, and
migration to a microservice architecture. Comprehensive
coverage includes « Why DevOps can require major
changes in both system architecture and IT roles « How
virtualization and the cloud can enable DevOps practices
* Integrating operations and its service lifecycle into
DevOps ¢ Designing new systems to work well with
DevOps practices ¢ Integrating DevOps with agile
methods and TDD « Handling failure detection, upgrade
planning, and other key issues « Managing consistency
issues arising from DevOps’ independent deployment
models ¢ Integrating security controls, roles, and audits
into DevOps ¢ Preparing a business plan for DevOps
adoption, rollout, and measurement

Software architecture—the conceptual glue that holds
every phase of a project together for its many
stakeholders—is widely recognized as a critical element
in modern software development. Practitioners have
increasingly discovered that close attention to a software
system’s architecture pays valuable dividends. Without
an architecture that is appropriate for the problem being

solved, a project will stumble along or, most likely, fail.
Page 17/32



Even with a superb architecture, if that architecture is not
well understood or well communicated the project is
unlikely to succeed. Documenting Software
Architectures, Second Edition, provides the most
complete and current guidance, independent of language
or notation, on how to capture an architecture in a
commonly understandable form. Drawing on their
extensive experience, the authors first help you decide
what information to document, and then, with guidelines
and examples (in various notations, including UML),
show you how to express an architecture so that others
can successfully build, use, and maintain a system from
it. The book features rules for sound documentation, the
goals and strategies of documentation, architectural
views and styles, documentation for software interfaces
and software behavior, and templates for capturing and
organizing information to generate a coherent package.
New and improved in this second edition: Coverage of
architectural styles such as service-oriented
architectures, multi-tier architectures, and data models
Guidance for documentation in an Agile development
environment Deeper treatment of documentation of
rationale, reflecting best industrial practices Improved
templates, reflecting years of use and feedback, and
more documentation layout options A new,
comprehensive example (available online), featuring
documentation of a Web-based service-oriented system
Reference guides for three important architecture
documentation languages: UML, AADL, and SySML

An architect's guide to designing, implementing, and

integrating DevOps in the enterprise Key Features
Page 18/32



Design a DevOps architecture that is aligned with the
overall enterprise architecture Design systems that are
ready for AlOps and make the move toward NoOps
Architect and implement DevSecOps pipelines, securing
the DevOps enterprise Book Description Digital
transformation is the new paradigm in enterprises, but
the big question remains: is the enterprise ready for
transformation using native technology embedded in
Agile/DevOps? With this book, you'll see how to design,
implement, and integrate DevOps in the enterprise
architecture while keeping the Ops team on board and
remaining resilient. The focus of the book is not to
introduce the hundreds of different tools that are
available for implementing DevOps, but instead to show
you how to create a successful DevOps architecture.
This book provides an architectural overview of DevOps,
AlOps, and DevSecOps — the three domains that drive
and accelerate digital transformation. Complete with step-
by-step explanations of essential concepts, practical
examples, and self-assessment questions, this DevOps
book will help you to successfully integrate DevOps into
enterprise architecture. You'll learn what AlOps is and
what value it can bring to an enterprise. Lastly, you will
learn how to integrate security principles such as zero-
trust and industry security frameworks into DevOps with
DevSecOps. By the end of this DevOps book, you'll be
able to develop robust DevOps architectures, know
which toolsets you can use for your DevOps
implementation, and have a deeper understanding of
next-level DevOps by implementing Site Reliability
Engineering (SRE). What you will learn Create DevOps

Page 19/32



architecture and integrate it with the enterprise
architecture Discover how DevOps can add value to the
quality of IT delivery Explore strategies to scale DevOps
for an enterprise Architect SRE for an enterprise as next-
level DevOps Understand AlOps and what value it can
bring to an enterprise Create your AlOps architecture
and integrate it into DevOps Create your DevSecOps
architecture and integrate it with the existing DevOps
setup Apply zero-trust principles and industry security
frameworks to DevOps Who this book is for This book is
for enterprise architects and consultants who want to
design DevOps systems for the enterprise. It provides an
architectural overview of DevOps, AlOps, and
DevSecOps. If you're looking to learn about the
implementation of various tools within the DevOps
toolchain in detail, this book is not for you.
Right Your Software and Transform Your Career Righting
Software presents the proven, structured, and highly
engineered approach to software design that renowned
architect Juval Léwy has practiced and taught around the
world. Although companies of every kind have successfully
implemented his original design ideas across hundreds of
systems, these insights have never before appeared in print.
Based on first principles in software engineering and a
comprehensive set of matching tools and techniques, Lowy’s
methodology integrates system design and project design.
First, he describes the primary area where many software
architects fail and shows how to decompose a system into
smaller building blocks or services, based on volatility. Next,
he shows how to flow an effective project design from the
system design; how to accurately calculate the project
duration, cost, and risk; and how to devise multiple execution
Page 20/32



options. The method and principles in Righting Software
apply regardless of your project and company size,
technology, platform, or industry. Lowy starts the reader on a
journey that addresses the critical challenges of software
development today by righting software systems and projects
as well as careers—and possibly the software industry as a
whole. Software professionals, architects, project leads, or
managers at any stage of their career will benefit greatly from
this book, which provides guidance and knowledge that would
otherwise take decades and many projects to acquire.
Register your book for convenient access to downloads,
updates, and/or corrections as they become available. See
inside book for details.

Kubernetes is the operating system of the cloud native world,
providing a reliable and scalable platform for running
containerized workloads. In this friendly, pragmatic book,
cloud experts John Arundel and Justin Domingus show you
what Kubernetes can do—and what you can do with it. You'll
learn all about the Kubernetes ecosystem, and use battle-
tested solutions to everyday problems. You'll build, step by
step, an example cloud native application and its supporting
infrastructure, along with a development environment and
continuous deployment pipeline that you can use for your
own applications. Understand containers and Kubernetes
from first principles; no experience necessary Run your own
clusters or choose a managed Kubernetes service from
Amazon, Google, and others Use Kubernetes to manage
resource usage and the container lifecycle Optimize clusters
for cost, performance, resilience, capacity, and scalability
Learn the best tools for developing, testing, and deploying
your applications Apply the latest industry practices for
security, observability, and monitoring Adopt DevOps
principles to help make your development teams lean, fast,

and effective
Page 21/32



The software development ecosystem is constantly changing,
providing a constant stream of new tools, frameworks,
techniques, and paradigms. Over the past few years,
incremental developments in core engineering practices for
software development have created the foundations for
rethinking how architecture changes over time, along with
ways to protect important architectural characteristics as it
evolves. This practical guide ties those parts together with a
new way to think about architecture and time.

A guide to successfully operating in a lean-agile organization
for solutions architects and enterprise architects Key Features
Develop the right combination of processes and technical
excellence to address architectural challenges Explore a
range of architectural techniques to modernize legacy
systems Discover how to design and continuously improve
well-architected sustainable software Book Description Many
organizations have embraced Agile methodologies to
transform their ability to rapidly respond to constantly
changing customer demands. However, in this melee, many
enterprises often neglect to invest in architects by presuming
architecture is not an intrinsic element of Agile software
development. Since the role of an architect is not pre-defined
in Agile, many organizations struggle to position architects,
often resulting in friction with other roles or a failure to provide
a clear learning path for architects to be productive. This book
guides architects and organizations through new Agile ways
of incrementally developing the architecture for delivering an
uninterrupted, continuous flow of values that meets customer
needs. You'll explore various aspects of Agile architecture
and how it differs from traditional architecture. The book later
covers Agile architects' responsibilities and how architects
can add significant value by positioning themselves
appropriately in the Agile flow of work. Through examples,

you'll also learn concepts such as architectural decision
Page 22/32



backlog,the last responsible moment, value delivery,
architecting for change, DevOps, and evolutionary
collaboration. By the end of this Agile book, you'll be able to
operate as an architect in Agile development initiatives and
successfully architect reliable software systems. What you will
learn Acquire clarity on the duties of architects in Agile
development Understand architectural styles such as domain-
driven design and microservices Identify the pitfalls of
traditional architecture and learn how to develop solutions
Understand the principles of value and data-driven
architecture Discover DevOps and continuous delivery from
an architect's perspective Adopt Lean-Agile documentation
and governance Develop a set of personal and interpersonal
gualities Find out how to lead the transformation to achieve
organization-wide agility Who this book is for This agile study
guide is for architects currently working on agile development
projects or aspiring to work on agile software delivery,
irrespective of the methodology they are using. You will also
find this book useful if you're a senior developer or a budding
architect looking to understand an agile architect's role by
embracing agile architecture strategies and a lean-agile
mindset. To understand the concepts covered in this book
easily, you need to have prior knowledge of basic agile
development practices.

In Team Topologies DevOps consultants Matthew Skelton
and Manuel Pais share secrets of successful team patterns
and interactions to help readers choose and evolve the right
team patterns for their organization, making sure to keep the
software healthy and optimize value streams. Team
Topologies will help readers discover: « Team patterns used
by successful organizations. « Common team patterns to
avoid with modern software systems. « When and why to use
different team patterns « How to evolve teams effectively. o

How to split software and align to teams.
Page23/32



Virtualization, cloud, containers, server automation, and
software-defined networking are meant to simplify IT
operations. But many organizations adopting these
technologies have found that it only leads to a faster-growing
sprawl of unmanageable systems. This is where infrastructure
as code can help. With this practical guide, author Kief Morris
of ThoughtWorks shows you how to effectively use principles,
practices, and patterns pioneered through the DevOps
movement to manage cloud age infrastructure. Ideal for
system administrators, infrastructure engineers, team leads,
and architects, this book demonstrates various tools,
techniques, and patterns you can use to implement
infrastructure as code. In three parts, you'll learn about the
platforms and tooling involved in creating and configuring
infrastructure elements, patterns for using these tools, and
practices for making infrastructure as code work in your
environment. Examine the pitfalls that organizations fall into
when adopting the new generation of infrastructure
technologies Understand the capabilities and service models
of dynamic infrastructure platforms Learn about tools that
provide, provision, and configure core infrastructure
resources Explore services and tools for managing a dynamic
infrastructure Learn specific patterns and practices for
provisioning servers, building server templates, and updating
running servers

In Continuous Architecture in Practice, three leading software
architecture experts update the discipline's classic practices
for today's environments, software development contexts,
and applications. Coverage includes: Discover what's
changed, and how the architect's role must change Reflect
today's quality attributes in evolvable architectures
Understand team-based software architecture, and
architecture as a "flow of decisions" Architect for security,

including continuous threat modeling and mitigation Explore
Page 24/32



architectural opportunities to improve performance in
continuous delivery environments Architect for scalability,
avoid common scalability pitfalls, and scale microservices and
serverless environments Improve resilience and reliability in
the face of inevitable failures Architect data for NoSQL, big
data, and analytics Use architecture to promote innovation:
case studies in Al/ML, chatbots, and blockchain

A professional's guide to solving complex problems while
designing modern software Key Features Learn best
practices for designing enterprise-grade software systems
Understand the importance of building reliable, maintainable,
and scalable systems Become a professional software
architect by learning the most effective software design
patterns and architectural concepts Book Description As
businesses are undergoing a digital transformation to keep up
with competition, it is now more important than ever for IT
professionals to design systems to keep up with the rate of
change while maintaining stability. This book takes you
through the architectural patterns that power enterprise-grade
software systems and the key architectural elements that
enable change such as events, autonomous services, and
micro frontends, along with demonstrating how to implement
and operate anti-fragile systems. You'll divide up a system
and define boundaries so that teams can work autonomously
and accelerate the pace of innovation. The book also covers
low-level event and data patterns that support the entire
architecture, while getting you up and running with the
different autonomous service design patterns. As you
progress, you'll focus on best practices for security, reliability,
testability, observability, and performance. Finally, the book
combines all that you've learned, explaining the
methodologies of continuous experimentation, deployment,
and delivery before providing you with some final thoughts on
how to start making progFrggsesz.S%%/ the end of this book, you'll



be able to architect your own event-driven, serverless
systems that are ready to adapt and change so that you can
deliver value at the pace needed by your business. What you
will learn Explore architectural patterns to create anti-fragile
systems that thrive with change Focus on DevOps practices
that empower self-sufficient, full-stack teams Build enterprise-
scale serverless systems Apply microservices principles to
the frontend Discover how SOLID principles apply to software
and database architecture Create event stream processors
that power the event sourcing and CQRS pattern Deploy a
multi-regional system, including regional health checks,
latency-based routing, and replication Explore the Strangler
pattern for migrating legacy systems Who this book is for This
book is for software architects and aspiring software
architects who want to learn about different patterns and best
practices to design better software. Intermediate-level
experience in software development and design is required.
Beginner-level knowledge of the cloud will also help you get
the most out of this software design book.

A single dramatic software failure can cost a company
millions of dollars - but can be avoided with simple changes to
design and architecture. This new edition of the best-selling
industry standard shows you how to create systems that run
longer, with fewer failures, and recover better when bad
things happen. New coverage includes DevOps,
microservices, and cloud-native architecture. Stability
antipatterns have grown to include systemic problems in large-
scale systems. This is a must-have pragmatic guide to
engineering for production systems. If you're a software
developer, and you don't want to get alerts every night for the
rest of your life, help is here. With a combination of case
studies about huge losses - lost revenue, lost reputation, lost
time, lost opportunity - and practical, down-to-earth advice
that was all gained throug%gz%ilngul experience, this book



helps you avoid the pitfalls that cost companies millions of
dollars in downtime and reputation. Eighty percent of project
life-cycle cost is in production, yet few books address this
topic. This updated edition deals with the production of
today's systems - larger, more complex, and heavily
virtualized - and includes information on chaos engineering,
the discipline of applying randomness and deliberate stress to
reveal systematic problems. Build systems that survive the
real world, avoid downtime, implement zero-downtime
upgrades and continuous delivery, and make cloud-native
applications resilient. Examine ways to architect, design, and
build software - particularly distributed systems - that stands
up to the typhoon winds of a flash mob, a Slashdotting, or a
link on Reddit. Take a hard look at software that failed the
test and find ways to make sure your software survives. To
skip the pain and get the experience...get this book.
DevOpsA Software Architect's PerspectiveAddison-Wesley
Professional

Learn to design, implement, measure, and improve DevOps
programs that are tailored to your organization. This concise
guide assists leaders who are accountable for the rapid
development of high-quality software applications. In DevOps
for Digital Leaders, deep collective experience on both sides
of the dev—ops divide informs the global thought leadership
and penetrating insights of the authors, all three of whom are
cross-portfolio DevOps leaders at CA Technologies. Aruna
Ravichandran, Kieran Taylor, and Peter Waterhouse analyze
the organizational benefits, costs, freedoms, and constraints
of DevOps. They chart the coordinated strategy of
organizational change, metrics, lean thinking, and investment
that an enterprise must undertake to realize the full potential
of DevOps and reach the sweet spot where accelerating code
deployments drive increasing customer satisfaction, revenue,
and profitability. Digital Iepggeezr%gre charged to bridge the



dev—-ops disconnect if their organizations are to survive and
flourish in a business world increasingly differentiated by the
degree to which dynamic application software development
harmonizes with operational resilience and reliability. This
short book applies the DevOps perspective to the competitive
challenge, faced by every high-performance IT organization
today, of integrating and automating open source, cloud, and
enterprise tools, processes, and techniques across the
software development life cycle from requirements to release.
What You Will Learn: Remove dependencies and constraints
so that parallel practices can accelerate the development of
defect-free software Automate continuous delivery across the
software life cycle to eliminate release bottlenecks, manual
labor waste, and technical debt accumulation Generate
virtualized production-style testing of applications through real-
time behavioral analytics Adopt agile practices so operations
teams can support developer productivity with automated
feedback, streamline infrastructure monitoring, spot and
resolve operations issues before they impact production, and
improve customer experience Identify the DevOps metrics
appropriate to your organization and integrate DevOps with
your existing best practices and investment Who This Book Is
For: IT leaders in large companies and government agencies
who have any level of responsibility for the rapid development
of high-quality software applications. The secondary
readership is members of development and operations
teams, security professionals, and service managers.
Software Systems Architecture is a practitioner-oriented guide
to designing and implementing effective architectures for
information systems. It is both a readily accessible
introduction to software architecture and an invaluable
handbook of well-established best practices. It shows why the
role of the architect is central to any successful information-
systems development prg&gggglgznd, by presenting a set of



architectural viewpoints and perspectives, provides specific
direction for improving your own and your organization's
approach to software systems architecture. With this book
you will learn how to Design an architecture that reflects and
balances the different needs of its stakeholders Communicate
the architecture to stakeholders and demonstrate that it has
met their requirements Focus on architecturally significant
aspects of design, including frequently overlooked areas such
as performance, resilience, and location Use scenarios and
patterns to drive the creation and validation of your
architecture Document your architecture as a set of related
views Use perspectives to ensure that your architecture
exhibits important qualities such as performance, scalability,
and security The architectural viewpoints and perspectives
presented in the book also provide a valuable long-term
reference source for new and experienced architects alike.
Whether you are an aspiring or practicing software architect,
you will find yourself referring repeatedly to the practical
advice in this book throughout the lifecycle of your projects. A
supporting Web site containing further information can be
found at www.viewpoints-and-perspectives.info

This book will show you how to create robust, scalable, highly
available and fault-tolerant solutions by learning different
aspects of Solution architecture and next-generation
architecture design in the Cloud environment.

DevOps promises to accelerate the release of new software
features and improve monitoring of systems in production, but
its crucial implications for software architects and architecture
are often ignored. In DevOps: A Software Architect's
Perspective, three leading architects address these issues
head-on. The authors review decisions software architects
must make in order to achieve DevOps' goals and clarify how
other DevOps participants are likely to impact the architect's
work. They also provide tPr;ge%ggnizational, technical, and



operational context needed to deploy DevOps more
efficiently, and review DevOps' impact on each development
phase. The authors also address cross-cutting concerns that
link multiple functions, offering practical insights into
compliance, performance, reliability, repeatability, and
security. This guide demonstrates the authors' ideas in action
with three real-world case studies: datacenter maintenance
for business continuity, management of a continuous
deployment pipeline, and migration to a microservice
architecture. Comprehensive coverage includes « Why
DevOps can require major changes in both system
architecture and IT roles ¢ How virtualization and the cloud
can enable DevOps practices ¢ Integrating operations and its
service lifecycle into DevOps ¢ Designing new systems to
work well with DevOps practices » Overcoming cultural and
communication differences between Dev and Ops ¢
Integrating DevOps with agile methods and TDD ¢ Handling
failure detection, upgrade planning, and other key issues ¢
Managing consistency issues arising from DevOps'
independent deployment models ¢ Integrating security
controls, roles, and audits into DevOps * Preparing a
business plan for DevOps adoption, rollout, and
measurement
A comprehensive guide to exploring software architecture
concepts and implementing best practices Key Features
Enhance your skills to grow your career as a software
architect Design efficient software architectures using
patterns and best practices Learn how software architecture
relates to an organization as well as software development
methodology Book Description The Software Architect’s
Handbook is a comprehensive guide to help developers,
architects, and senior programmers advance their career in
the software architecture domain. This book takes you
through all the important&once&ots, right from design

ge 30/32



principles to different considerations at various stages of your
career in software architecture. The book begins by covering
the fundamentals, benefits, and purpose of software
architecture. You will discover how software architecture
relates to an organization, followed by identifying its
significant quality attributes. Once you have covered the
basics, you will explore design patterns, best practices, and
paradigms for efficient software development. The book
discusses which factors you need to consider for performance
and security enhancements. You will learn to write
documentation for your architectures and make appropriate
decisions when considering DevOps. In addition to this, you
will explore how to design legacy applications before
understanding how to create software architectures that
evolve as the market, business requirements, frameworks,
tools, and best practices change over time. By the end of this
book, you will not only have studied software architecture
concepts but also built the soft skills necessary to grow in this
field. What you will learn Design software architectures using
patterns and best practices Explore the different
considerations for designing software architecture Discover
what it takes to continuously improve as a software architect
Create loosely coupled systems that can support change
Understand DevOps and how it affects software architecture
Integrate, refactor, and re-architect legacy applications Who
this book is for The Software Architect’s Handbook is for you
if you are a software architect, chief technical officer (CTO),
or senior developer looking to gain a firm grasp of software
architecture.

This open access book includes contributions by leading
researchers and industry thought leaders on various topics
related to the essence of software engineering and their
application in industrial projects. It offers a broad overview of
research findings dealinqbgglietgl/%grrent practical software



engineering issues and also pointers to potential future
developments. Celebrating the 20th anniversary of adesso
AG, adesso gathered some of the pioneers of software
engineering including Manfred Broy, Ivar Jacobson and Carlo
Ghezzi at a special symposium, where they presented their
thoughts about latest software engineering research and
which are part of this book. This way it offers readers a
concise overview of the essence of software engineering,
providing valuable insights into the latest methodological
research findings and adesso’s experience applying these
results in real-world projects.

Copyright: 0e0d37fa99ee410240f0ef182646f2c7

Page 32/32


https://isarch.org/
http://isarch.org

